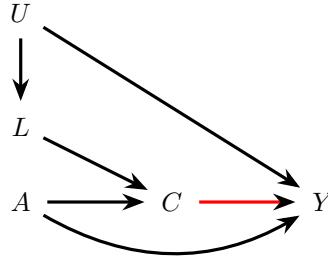


MATH-449 - Biostatistics
EPFL, Spring 2024
Problem Set 3

1. Consider the DAG below, which we discussed in lectures during Week 3. Unless directed otherwise, ignore the **red** arrow in the graph (pretend it is not there, until told otherwise). Suppose you are consulting with a clinician who is interested in estimating the expected potential outcomes in their study population under treatment level $a = 1$ and comparing it to that under treatment level $a = 0$. Suppose the investigator has access to data on $\{L, A, Y\}$ but that C represents a variable indicating that patients were lost to follow-up and data on Y for patients with $C = 1$ is not recorded.

- Consider an intervention that sets treatment $A = a$. What are the back-door paths for this intervention with respect to outcome Y ?
- Is the backdoor criterion satisfied? If so provide a functional of parameters of the distribution of $\{L, A, Y\}$ that identifies $\mathbb{E}[Y^a]$. If so, describe an estimation strategy for this functional that you would share with your collaborators, or name some issues that would arise.
- Consider an intervention that sets $A = a$ and $C = 0$. What are the back-door paths for this intervention with respect to outcome Y ?
- Is the backdoor criterion satisfied? If so provide a functional of parameters of the distribution of $\{L, A, Y\}$ that identifies $\mathbb{E}[Y^{a,c=0}]$. If so, describe an estimation strategy for this functional that you would share with your collaborators.
- This parameter has a different interpretation than the one that your collaborators first described. Can you convince them that this parameter is still of interest, and if so, how?
- Suppose now that the red arrow is present. Repeat the previous steps (c)-(e) for $\mathbb{E}[Y^{a,c=0}]$ with this modified graph.



2. A survival time T is exponentially distributed with rate parameter $\beta > 0$ if its survival function, $S(t) = P(T > t)$, takes the form $S(t) = e^{-\beta t}$ for $t \geq 0$. Note additional definitions at the end of the problem set.

- Find the density function $f(t) = -\frac{d}{dt}S(t)$.
- Find the hazard function and the cumulative hazard function.
- A waiting time T is *memoryless* if $P(T > t + s | T > t) = P(T > s)$ for all $t, s \geq 0$, i.e. if the waiting time distribution does not depend on how much time has already elapsed. Show that an exponentially distributed waiting time is memoryless.

3. Consider the following definition:

Definition 1 (Discrete martingale). *Let $M = \{M_0, M_1, M_2, \dots\}$ be a discrete stochastic process adapted to $\{\mathcal{F}_n\}$. The discrete process M is a martingale if*

$$\mathbb{E}(M_n | \mathcal{F}_{n-1}) = M_{n-1}$$

.

(Exercise 2.1 in ABG 2008) Let M_n be a discrete time martingale with respect to the filtration \mathcal{F}_n , for $n \in \{0, 1, 2, \dots\}$. By definition of M being a martingale we have that $E[M_n | \mathcal{F}_{n-1}] = M_{n-1}$ for all $n \geq 1$. Show that this is equivalent to $E[M_n | \mathcal{F}_m] = M_m$ whenever $n \geq m \geq 0$.

4. a) Find $E[T]$ when T is a Weibull distributed variable, i.e. when the hazard function of T is $\alpha(t) = \lambda kt^{k-1}$ for $\lambda, k > 0$ [‡]

b) (Exercise 1.3 in ABG 2008) Suppose T is a survival time with finite expectation. Show that[†]

$$E[T] = \int_0^\infty P(T > s)ds.$$

Additional definitions

Definition 2 (Survival function). *The survival function is $S(t) = P(T > t)$, that is, the probability that the survival time T exceeds t .*

Definition 3 (Hazard rate). *The hazard rate $\alpha(t) = \lim_{dt \rightarrow 0} \frac{1}{dt} P(t + dt > T > t | T \geq t)$ is the rate of events per unit of time.*

Definition 4 (Cumulative Hazard rate). *Define the cumulative hazard,*

$$H(t) = \int_0^t \alpha(s)ds.$$

[‡]Hint: Express the solution using the gamma function, which is given by $\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx$.

[†]Hint: Write $T = \int_0^\infty I(T > u)du$.